Hilbert coefficients and the associated graded rings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Depth of Associated Graded Rings via Hilbert Coefficients of Ideals

Given a local Cohen-Macaulay ring (R,m), we study the interplay between the integral closedness – or even the normality – of an m-primary R-ideal I and conditions on the Hilbert coefficients of I . We relate these properties to the depth of the associated graded ring of I .

متن کامل

Hilbert Coefficients and Depths of Form Rings

We present short and elementary proofs of two theorems of Huckaba and Marley, while generalizing them at the same time to the case of a module. The theorems concern a characterization of the depth of the associated graded ring of a Cohen-Macaulay module, with respect to a Hilbert filtration, in terms of the Hilbert coefficient e1. As an application, we derive bounds on the higher Hilbert coeffi...

متن کامل

Hilbert Coefficients and Depth of the Associated Graded Ring of an Ideal

In this expository paper we survey results proved during the last fifty years that relate Hilbert coefficients e0(I) and e1(I) of an m-primary ideal I in a Cohen-Macaulay local ring (R, m) with depth of the associated graded ring G(I). Several results in this area follow from two theorems of S. Huckaba and T. Marley. These were proved using homological techniques. We provide simple proofs using...

متن کامل

Computing Hilbert–kunz Functions of 1-dimensional Graded Rings

According to a theorem of Monsky, the Hilbert–Kunz function of a 1-dimensional standard graded algebra R over a finite field K has, for i 0, the shape HKR(i) = c(R) · p i + φ(i), where c(R) is the multiplicity of R and φ is a periodic function. Here we study explicit computer algebra algorithms for computing such Hilbert–Kunz functions: the period length and the values of φ, as well as a concre...

متن کامل

Sally Modules and Associated Graded Rings

To frame and motivate the goals pursued in the present article we recall that, loosely speaking, the most common among the blowup algebras are the Rees algebra R[It] = ⊕∞ n=0 I ntn and the associated graded ring grI(R) = ⊕∞ n=0 I n/In+1 of an ideal I in a commutative Noetherian local ring (R,m). The three main clusters around which most of the current research on blowup algebras has been develo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1999

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-99-05080-7